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Population context determines cell-to-cell variability
in endocytosis and virus infection
Berend Snijder1,2, Raphael Sacher1,2, Pauli Rämö1, Eva-Maria Damm1, Prisca Liberali1 & Lucas Pelkmans1

Single-cell heterogeneity in cell populations arises from a combina-
tion of intrinsic and extrinsic factors1–3. This heterogeneity has
been measured for gene transcription, phosphorylation, cell mor-
phology and drug perturbations, and used to explain various
aspects of cellular physiology4–6. In all cases, however, the causes
of heterogeneity were not studied. Here we analyse, for the first
time, the heterogeneous patterns of related cellular activities,
namely virus infection, endocytosis and membrane lipid composi-
tion in adherent human cells. We reveal correlations with specific
cellular states that are defined by the population context of a cell,
and we derive probabilistic models that can explain and predict
most cellular heterogeneity of these activities, solely on the basis
of each cell’s population context. We find that accounting for
population-determined heterogeneity is essential for interpret-
ing differences between the activity levels of cell populations.
Finally, we reveal that synergy between two molecular components,
focal adhesion kinase and the sphingolipid GM1, enhances the
population-determined pattern of simian virus 40 (SV40) infection.
Our findings provide an explanation for the origin of heterogeneity
patterns of cellular activities in adherent cell populations.

Virus infection can be considered the end result of the concerted
action of many cellular processes, including endocytosis and the
establishment of membrane lipid composition7,8. It is well accepted
that these activities display heterogeneity within a population of cells,
but the underlying causes of this heterogeneity are not known. We
can therefore not predict how such activities behave in a population
of cells9.

To study the heterogeneity of these activities, we examined large
populations of single monoclonal adherent human cells after three
days of growth. These were infected by rotavirus, dengue virus, mouse
hepatitis virus (MHV) or SV40. MHV uses clathrin-mediated endo-
cytosis (CME) for infectious entry into the cell10, and SV40 binds to
the sphingolipid GM1 for host cell attachment and entry11,12. To ana-
lyse CME, we allowed cells to internalize fluorescent transferrin13. To
determine the amount of GM1, which is enriched in lipid rafts on the
cell surface14, we exposed cells to fluorescent cholera toxin B15.

We observed that the cell-to-cell variation or heterogeneity of
these activities displays specific patterns in both cancer- (HeLa and
A431) (Fig. 1A) and non-cancer-derived (MCF10A) cells (see below).
The patterns could not have been the result of physical constraints on
the accessibility of virus particles or fluorescent probes to particular
cells, because different types of pattern were observed.

A potential source of single-cell heterogeneity is the deterministic
interplay between the phenotypic state of a cell and its activities2,16,
mediated by sensors and signal transduction networks. Growing iso-
genic adherent mammalian cells create cell islets and regions that are
sparsely or densely populated, to which cells adapt their size, shape
and rate of proliferation17,18 (Supplementary Movie 1), and display

several discrete subpopulations19. Together, this implies that patterns
of varying cellular states can arise from the adaptation of individual
human cells to the particular ‘population context’ in which they
reside. The coupling between cell size and timing of meiosis in yeast20,
between cell size and the determination of phage infection outcome
in Escherichia coli21, and the self-assembly of prokaryotic cells into
complex colony patterns22, indicate that such mechanisms also
operate in unicellular organisms. We therefore hypothesized that
the heterogeneity patterns that we observed are caused by regulatory
mechanisms that couple the phenotypic state of a cell to intracellular
processes on which virus infection depends, such as endocytosis and
the lipid composition of the cell surface.

To reveal the presence of such mechanisms, we used three data-
driven modelling approaches on several single-cell measurements
obtained by computerized image analysis and supervised machine
learning from multiple large populations of cells. (See Fig. 1B for an
overview of the methods used, and Supplementary Methods for
detailed information.) We first measured for each cell the size of
the population to which it belonged, its local cell density, its position
on a cell islet edge, its cell size, its mitotic state and its apoptotic state
(microenvironment and cell state). By delineating how these para-
meters interact with each other, we quantified how the characteristics
of a cell population are determined. This showed that each para-
meter, in particular population size, local cell density, position on
a cell islet edge, and cell size, represents a population-determined
property of an individual cell. The same interactions were observed
in cancer cells (Supplementary Fig. 1), normal diploid cells (see
below) and primary cells (not shown), despite their different
morphologies and growth rates.

For each cell, we next determined whether it was infected, or we
quantified its CME activity or cell-surface level of GM1 (cellular
activities). We then used the population-determined properties as
predictors to model the probability of infection, the activity of CME
and the amount of GM1 on the cell surface. In each instance, models
could be derived that had good fits (Fig. 1C and Supplementary
Fig. 2). The model parameters demonstrated the existence of exten-
sive and specific regulatory mechanisms between population context
and virus infection, endocytosis and membrane lipid composition
(Fig. 1D). Importantly, the models were able to predict accurately the
heterogeneity patterns of cellular activities, solely based on a quanti-
tative assessment of the population context and the state of indi-
vidual cells (Fig. 1E).

An interesting question that arises is to what extent these population-
determined effects contribute to the total variation observed in a
population. Strikingly, variance analysis (Supplementary Methods)
demonstrated that variation determined by population context is a
major component of the total variation observed. For rotavirus, SV40
and dengue virus infection, our measures of the local environment
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and cellular state account for at least 60%, 74% and 82% of the
respective total variation for each activity (Fig. 2a). For CME and
GM1 content on the cell surface, variation determined by population
context appeared to constitute at least 30% and 21% of the respective
total variation (Fig. 2a).

To understand better the variation unexplained by population
context, we analysed the variance in CME activity in groups of cells
with similar population-determined phenotypic properties. This
revealed that cells in certain population contexts displayed as much
as a 20-fold lower variation than randomly selected cells (inset Fig. 2a).
When we analysed this variance relative to the mean CME activity
in these groups of cells (coefficient of variation), we observed a
threefold lower coefficient of variation in cells with a high local cell
density (Fig. 2b). This indicates that these cells have, besides a high
CME activity, mechanisms in place that exert a tight control on this
activity.

The finding that much of the variation in virus infection, endocy-
tosis and lipid composition of the cell surface is deterministically
established by the adaptation of cells to their population context reveals
a fundamental problem in our current methods of studying differences
in these activities between cell populations. We illustrate this by com-
paring the fraction of cells infected with dengue virus (Fig. 2c) and the
single-cell distributions of CME activity (Fig. 2d) between unperturbed
populations of different sizes. The activities display levels that are stati-
stically different (respectively P 5 2.4 3 1026 and P , 10210) between
the different unperturbed populations. However, after normalization
of both activities with activities predicted by their respective models, no
significant differences were found (P values of respectively 0.97 and
0.75). This is the correct conclusion, as both populations were un-
perturbed and only differed in their population context. A similar
problem exists with supervised and unsupervised clustering methods.
Even though such methods correctly identify different phenotypic
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Figure 1 | Modelling and predicting diverse activity patterns in
heterogeneous human cell populations. A, GM1 levels on the plasma
membrane of A431 cells and dengue virus (DV) infection in HeLa cells are
higher in cells at islet edges (upper and lower left panels). MHV infection and
CME (upper right and middle panels) are highest in HeLa cells in crowded
regions. SV40 (lower right panel) infects HeLa cells that are large and spread
out. Scale bars: GM1 and dengue virus, 50 mm; CME, MHV and SV40
respectively 300, 250 and 150mm. B, Overview of the experimental,
computational and statistical methods used in this study (see Methods and
Supplementary Methods for details). C, Virus infection (n 5 9; grey

box-plots) and CME (black lines; average 6 single-cell s.d.) plotted against
population-context parameters. Model fits are depicted in red. Right axes
display the number of cells measured (light-grey bars and lines).
D, Regression coefficients between population-context parameters
(columns) and cellular activities (rows), colour-coded according to
coefficient sign and top-three ranked explanatory power (see legend). ND,
not determined. E, Model-predicted virus infection and CME patterns
displayed on computer-generated reproductions of original images (left
panels). Predicted and measured single-cell activity levels are shown (middle
and right panels).
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states (Supplementary Fig. 3), they will not reveal whether these pheno-
typic states are determined by cellular adaptations to the population
context. Therefore, these methods will be unable to distinguish
between a change in cellular activity that is a consequence of an altered
population context and a change that is a consequence of a direct
perturbation.

Besides these fundamental implications, our analysis reveals
suggestions for the mechanisms underlying population-determined
heterogeneity of virus infection (see ranking in Fig. 1d and Sup-
plementary Fig. 4). The infection efficiency of rotavirus is strongly
increased in cells that grow in sparsely populated areas. Indeed, rota-
virus uses integrins as its receptor23, which are probably highly
expressed on the surface of cells that grow sparsely24. MHV, on the
contrary, prefers to infect cells that grow at high local density, similar
to where CME is most active. Dengue virus infection occurs almost
exclusively in cells located on the edge of cell islets, indicating that it
relies on mechanisms highly active in polarized cells25.

The heterogeneity signature of SV40 infection demonstrated a
particular preference for large and spread-out cells in both cancer-
and non-cancer-derived cell lines (see below). As these cells are pre-
dominantly located on the edge of cell islets and in areas that are
sparsely populated, they also have higher amounts of GM1 on the
cell surface (Fig. 1D), the receptor for SV4011,12. In addition, we
previously found that focal adhesion kinase (FAK or PTK2) is
required for SV40 infection8, and regulatory links between the micro-
environment of cells and FAK24, and between FAK and sphingolipid
membrane domains, have been reported26,27.

To test whether FAK and GM1 can be placed in a causal network
that determines the heterogeneity pattern of SV40 infection, we
applied Bayesian network learning5 (Supplementary Methods) on

single-cell measurements of SV40 infection, amount of GM1 on
the cell surface, level of Y397-phosphorylated (activated) FAK and
population-determined phenotypic properties (Fig. 3a and Sup-
plementary Fig. 5). We chose to use MCF10A cells to point out the
relevance of these phenomena also for non-cancer-derived, normal
diploid cells. This identified a unique causal network that combines
single-cell microenvironmental parameters with molecular com-
ponents and virus infection (Fig. 3b). We found that cell density is
coupled to the regulation of cell size through GM1 cell surface
content, and FAK activation. The last two are also determinants of
SV40 infection, in addition to as yet unidentified factors that are
regulated by cell density. We validated three causal interactions in
the Bayesian network. Exogenous addition of GM1 to MCF10A cells
increased the levels of phosphorylated FAK and increased SV40 infec-
tion. Additionally, knockdown of FAK by RNA interference strongly
decreased SV40 infection (Supplementary Fig. 7). Thus, by applying
quantitative data-driven modelling on a combination of micro-
environmental, cellular and molecular parameters, we reveal mech-
anistic insights into the establishment of cellular heterogeneity.

We next wondered why the heterogeneity of SV40 infection is
more deterministic (74% explained) than the GM1 levels and FAK
activity on which it depends (respectively 30% and 65% explained)
(Fig. 3b). Interestingly, when we validated the causal interaction
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between GM1 and FAK by exogenous addition of GM1, we observed
a 2.5-fold stronger activation of FAK in sparse cells compared with
dense cells (Fig. 3c). This indicates that GM1 and FAK synergize in
sparse cells, leading to the more deterministic downstream activity of
SV40 infection. Such synergistic mechanisms can partly cancel out
the intrinsic and uncorrelated noise of individual components,
increasing the deterministic nature of complex activities at the cel-
lular level2,28.

We have shown that much of the variation in virus infection,
endocytosis and membrane lipid composition is determined by the
adaptation of cells to their population context, and uncovered basic
predictive principles by which non-differentiated cells create com-
plex patterns of activity. Similar mechanisms may determine the
heterogeneity of other cellular processes. Perturbation screens, com-
bined with quantitative modelling of single cells in their population
context, will further reveal the molecular networks that regulate het-
erogeneity patterns in cell populations. The principles described here
most likely operate in all systems of collective cellular behaviour,
from prokaryotic colonies to multicellular organisms.

METHODS SUMMARY
All human cell lines were maintained under standard tissue culture conditions. All

assays were performed in 96-well plates, and cells were imaged on automated

widefield cellWoRx microscopes (Applied Precision) or ImageXpress Micro

microscopes (Molecular Devices) with 310 or 320 magnification. Infection

assays were performed as described (Supplementary Information). CME was

measured using Alexa Fluor 488-conjugated transferrin, and GM1 levels were

visualized using cholera toxin B conjugated to Alexa Fluor 568 as described8.

Phosphorylated-FAK [Y397] was visualized by using standard indirect immuno-

fluorescence protocols. High-content single-cell image analysis was

performed using CellProfiler29 and additional image analysis algorithms written

specifically for this study (Supplementary Information). In short, cells were

identified by object detection on DAPI images, and these regions were typically
expanded to cover the cytoplasm. Shape features and features describing the

texture and intensities in all channels were extracted for these regions of interest.

Support vector machine learning was applied (P. Rämö, R. Sacher, B. Snijder,

B. Begemann and L. Pelkmans, submitted) for the classification of diverse cellular

phenotypes, including interphase, mitotic and apoptotic cellular states, as well as

infectious phenotypes and technical artefacts. Globally, these data were further

analysed using several statistical methods. First, graphical Gaussian modelling

quantified how a population shapes the property distributions of individual cells

and how individual properties influence each other, which was experimentally

validated by live cell imaging. Second, probit regression modelling revealed how

virus infection depends on population-determined properties of individual cells,

as did weighted linear regression for GM1 content and CME. Finally, bootstrapped

Bayesian network learning was applied to identify causal interactions between

properties of the microenvironment, FAK-phosphorylation, GM1 content and

SV40 infection in MCF10A cells. Selected inferred causal links were experimentally

validated by using GM1 addback and short interfering RNA (siRNA)-mediated

silencing of FAK as described8. A detailed description of the methods performed in

this study is provided in the Supplementary Information.
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